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ABSTRACT 

The aim of this paper is to introduce and investigate a novel method for constructing multivariate lifetime 

distributions. The idea is based on the combined use of copula and mixtures. Both have been used on their own for 

constructing multivariate lifetime distributions, but with only moderate success. Our aim is to show that their joint use 

possesses some distinct advantages. 
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1. INTRODUCTION 

The construction of multivariate lifetime distributions is an important problem and there are a number of methods 

that have been used successfully in their construction. Some of these methods are discussed in the book of bivariate 

continuous distributions by Hutchinson and Lai (1990). Two ideas, mixtures (Hougaard, 1986; Crowder, 1989) and 

copulas (Joe, 1997), have been used in particular. The mixture idea is easy to use, but may not provide adequate 

dependence structures (see Walker and Stephens, 1999). On the other hand, the copula methods allow flexible models but 

are hard to study. Song (2000) presents a class of multivariate dispersion models generated from the Gaussian copula and 

studied some of its properties. Adham and Walker (2001) applied the mixture representation of the Gompertz distribution 

in order to motivate a new family of distributions which extends naturally to the multivariate case. The goal of this paper is 

to combine the mixture and copula ideas in order to construct multivariate lifetime distributions which are easy to analyze 

and allow full dependence structures.  

It is well known that any lifetime density function ( )tfT
 of a non-negative continuous random variable Tcan be 

written as 

( ) ( ) ( ),tSthtf TTT =  

Where ( )thT
is the hazard function, ( )tST

 is the survival function, which can itself be written as 

( ) ( ){ },exp tHtS TT −=  

Where 

( ) ( ) ,
0∫=
t

TT dwwhtH
           

 (1) 

Is the cumulative hazard function That is,  

( ) ( ) ( ){ }.exp tHthtf TTT −=  
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The mixture idea of Walker and Stephens (1999) is to introduce a non-negative latent variable U which follows a 

gamma distribution with shape parameter 2 and scale parameter 1, denoted by G (2, 1). The density function can be written 

as a mixture: 

( ) ( ) ( ){ }
( ) ( ) .0,exp

,
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The mixture representation can be written in a more general form follows 

( ) ( ) ( ){ },tAuI
u

tg
utf UT >=  

U ~ G (2, 1). 

Table 1 provides the functions( )tg and )(tA  which can be used to present a mixture from the most used 

lifetime distributions. The functions( )tg  and )(tA  are not unique; but one can take( )tg  as the hazard function and

)(tA as the cumulative hazard function when known in closed form. 

Table 1: ( )tg and )(tA Functions of the Most Used Lifetime Distributions 

Distribution ( )tg  )(tA  

Exp(c) c  tc  

Weibull(a, c) 1−atca  atc  

Gompertz(a, c) )exp(atca  { }1)exp( −atc  

G(a, c) 1

)(
−
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Intuitively, it can be seen from Table 1, for exponential, Weibull and Gompertz distributions, the functions ( )tg  

and )(tA  are their hazard and cumulative hazard functions, respectively. Here we concentrate on the Gompertz distributions 

with parameters a and c, denoted by Gompertz (a, c), where the parameters are assumed to be positive. 

The hazard function is  

( ) ,0),exp( >= tatcatHT              (2) 

A literature search suggests many bivariate and multivariate lifetime distributions. However some of them are 

difficult to study. Furthermore, the dependence properties might be unknown or no extension to the multivariate case seems 

possible. For example, Frees et al. (1996) applied a bivariate Gompertz distribution with Frank’s copula. However, there 

seems to be no available extension of Frank’s copula to dimensions higher than 2, except for discrete distributions (Joe, 

1993). This is not the story for the Gaussian copula. Carrier (2000) studied a data set from a life annuity portfolio on six 
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different bivariate Gompertz distributions, each of which is based on a specific copula model. Precisely, the Gompertz 

marginal distributions are coupled with the Frank’s, frailty, normal generalized Frank’s, linear mixing frailty and correlated 

frailty copulas. Carrier (2000) found the maximum likelihood estimates for the parameters in the bivariate models. Song 

(2000) presented a class of multivariate dispersion models generated from the Gaussian copula and studied some of its 

properties. Adham and Walker (2001) applied the mixture representation of the Gompertz distribution in order to motivate a 

new family of distributions which extends naturally t the multivariate case. Some other studies were devoted to using copulas 

in studying multivariate non-normal distributions such as Abd EL Lteef(2005), AL-Hussaini and Ateya (2006), AL-Dayian 

et al. (2008), Gupta et al. (2010),Meisch et al. (2014), Alai et al. (2015), Alai et al. (2016) among others. 

Here we introduce our ideas for the constructions of multivariate lifetime distributions. Specifically, we assume 

that ( )′= pTTT ,,1 … to be ap-dimensional non-negative random vector which are conditionally independent given 

( )′= pUUU ,,1 …  i.e. 

( ) ( ).
1

∏
=

=
p

j
jjUTUT utfutf

jj

          

 (3) 

If we take the jU ’s to be independent G (2, 1) then the jT ’s will be independent. To generate a dependence 

structure we construct a multivariate distribution for U by using a copula, specifically Frank’s copula and the Gaussian 

copula. That is,  

( ) ( ) ( ),,,
,,

11

1
1 ∏
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j
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C

uuf
jνν
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…

…

…            (4)  

Where, for pj ,,1…= , ( )jUj uF
j

=ν  and 
jj UU Ff , are density and distribution functions connected with the 

gamma distribution with shape parameter 2 and scale parameter 1. Here C is the copula. 

This way we avoid the problems of placing a copula directly onto an unknown distribution with unknown 

parameters, and instead are placing it onto the distribution with fixed marginals. There is also a nice interpretation: the top 

level sorts out the marginal aspects. While, the lower level concerns with the dependence structure and the two levelscan 

be dealt with separately. 

Describing the layout of the paper, Section 2 illustrates the construction of the multivariate Gompertz distribution 

based on Frank’s copula, while Section 3 deals with the multivariate Gompertz distribution based on the Gaussian copula. 

Section 4 studies dependence properties of the new multivariate models.Finally, an illustrative example is presented in 

Section 5. 

2. FRANK’S COPULA 

This section provides a multivariate Gompertz distribution based on Frank’s copula. Since there seems to be no 

available extension of Frank’s copula to dimension higher than 2, except for discrete distributions (Joe, 1993), we 

concentrate on 2=p . 
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Frank’s copula for the distribution functions ( )jUj uF
j

=ν , ,2,1=j  is given by 
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The joint distribution function of the mixing (latent) variables 1U  and 2U can be written as 

( ) ( )2121 ,, ννCuuFU = , 

Where ( )21,ννC  is given by (5). Given that C  and ( )jU uF
j

 are continuous and differentiable, the bivariate 

gamma density function of the pair ( )21,UU  is then given by 

( ) ( ) ( ) ( )212121 ,,
21

ννCufufuuf UUU ′= ,            (6) 

Where ( )jU uf
j

is G (2, 1) density function and  
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Consequently, the density function of the bivariate Gompertz distribution with Frank’s copula can be written as 

( ) ( ) ( ){ } 2121

2

1
21 21

21

,, duduuFuFC
u

eca
ttf UUK

j j

ta
jj

KT

jj

′













= ∫ ∏∫

∞

=

∞
, 

Where ( )1−= jj ta

jj ecK , 2,1=j . 

3. GAUSSIAN COPULA 

In this section we present a multivariate Gompertz distribution based on the Gaussian copula. Similar to the 

illustrated multivariate Gompertz distribution based on Frank’s copula, provided in the previous section, we use the 

mixture representation of the univariate Gompertz distribution. By extending the mixing distribution, G(2, 1), to 

multivariate form, but here it is based on the Gaussian copula with joint density function 

( ) ( ) ( ),,,1
1
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p

j
jUU Cufuf
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
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           (8) 

Where ( )jU uf
j

 is the density function of G (2,1) distribution, ( )jUj uF
j

=ν , and ( )pC νν ,,1…′  is the 

p-dimensional Gaussian copula density function given by 

( ) ( ){ }yIRyRC p −′−=′ −− 1
2
1

1 exp,, 2
1

νν … ,         (9) 

Where 1−R  is the inverse of the pp × correlation matrix, I is pp ×  identity matrix and ( )′= pyyy ,,1…  is a 
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vector such that ( )jjy ν1−Φ= . The joint density function of ( )pTTT ,,1 …=  is given by 

( )
( )

( )
( )

( ) ,1
11

pUH UTHT duduufutftf
tTptpT

……∫∫
∞∞

=         (10) 

Where ( )utf UT  and ( )ufU  are given by (3) and (8), respectively, and ( )jT tH
j

, ,,,1 pj …= is given by (1) 

after indexing by j. 

4. DEPENDENCE PROPERTIES 

One reason for using Frank’s and the Gaussian copulas, rather than others, is that they provide full range of 

dependence. For Frank’s copula, Nelsen (2010) evaluated Kendall’s( )τK and Sperman’s rho ( )ρS coefficients of 

correlation to be, respectively 

( ){ },1
4

1 1 −−−= α
ατ DK  

And 

( ) ( ){ },12
1 12 αα

αρ −−−−= DDS  

Where for 2,1=k , ( )⋅kD  is “Debye” function. One can find out that: 

• The correlation parameter ,0→α ( )21,ννC  given by (5), approaches 21νν implying independence. 

• When ∞→α , the positive correlation increases such that the correlation measure approaches 1+ . 

• When −∞→α , the correlation measure approaches 1− . 

On the other hand it is known that the Gaussian copula family provides a full range of dependence between the 

joint variables. That is  

( ) .1,1 21 +≤≤− UUCorrU  

For simplicity in studying dependence properties of the multivariate model based on mixtures and Gaussian 

copula we provide the multivariate exponential distribution as a special case of both multivariate Weibull and multivariate 

Gompertz distributions. For the bivariate exponential distribution with marginal distributions ( )jcExp , 2,1=j , one 

can easily find that the conditional expectation 

( )
21

21
221121 4

,
cc

uu
uUuUTTE UT === . 

Consequently, the correlation between 1T and 2T  is given by 
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( ) ( ) ,1
4

1
, 2121 −= UUETTCorr UT                  (11) 

And the correlation between 1U and 2U  is given by 

( ) ( ) .2
2

1
, 2121 −= UUEUUCorr UU

                
(12) 

From equations (11) and (12) one can show that the dependence of the bivariate exponential besed onmixtures and 

the Gaussian copula is  

( ) ( ).,
2

1
, 2121 UUCorrTTCorr UT =  

That is, our idea of combining both mixture and copula provides a wide range of both positive and negative 

dependence. 

5. ILLUSTRATIVE EXAMPLE 

The data set of this example, fracture toughness, is taken from Walker and Stephens (2000). They developed 

probability models for the analysis of the fracture toughness data in the ductile to brittle temperature transition range. 

Assuming that the observed crack length (in mm) is presented by a random variable 1T  and random variable 2T  is the 

fraction toughness (in KJ).In this study we concentrate on the case of ductile fracture occurrence, both 1T  and 2T  are 

positive. Specifically, we deal with a subset of the comprises 23 data pairs. Table 2, presents the considered data set. 

Applying WinBUGS, three bivariate distributions are fitted, separately and twice, to the data set. One time for 

Frank’s copula and the other for the Gaussian copula The three bivariate distributions are bivariate exponential, bivariate 

Weibull and bivariate Gompertz. The six model parameters were estimated. Figures 1, 2 and 3 show the marginal posterior 

distributions of the parameters of the bivariate models with Frank’s copula. And Figures 4, 5 and 6, show the marginal 

posterior distributions of the parameters of the bivariate models with Gaussian copula. 

Table 2: Fracture Toughness Data Set. (Source: Walker and Stephens, 2000) 

1T  2T  

0.14 101.9 
0.85 309.0 
0.311 219.0 
0.611 270.0 
1.17 309.8 
1.0 318.0 
0.2 169.0 
0.17 177.0 
1.922 291.9 
0.474 270.6 
2.260 390.5 
0.190 256.9 
0.430 293.9 
0.680 328.5 
0.760 333.4 
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1.170 394.9 
0.860 337.9 
0.890 339.6 
0.870 340.9 
0.430 286.7 
0.670 278.0 
0.377 197.6 
0.294 220.1 

 

 

Figure 1: Marginal Posterior Distributions of the Correlation Parameters of the Bivariate  
Exponential Distribution Based on Frank's Copula 

 

Figure 2: Marginal Posterior Distributions of the Parameters of the Bivariate Weibull Distribution 
Based on Frank's Copula 
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Figure 3: Marginal Posterior Distributions of the Parameters of the Bivariate Gompertz Distribution 
Based on Frank's Copula 

 

Figure 4: Marginal Posterior Distributions of the Parameters of the Bivariate Exponential Distribution  
Based on the Gaussian Copula 
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Figure 5: Marginal Posterior Distributions of the Parameters of the Bivariate Weibull Distribution  
Based on the Gaussian Copula 

 

Figure 6: Marginal Posterior Distributions of the Parameters of the Bivariate Gompertz Distribution 
Based on the Gaussian Copula 
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