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ABSTRACT

The aim of this paper is to introduce and inveséiga novel method for constructing multivariatestiiine
distributions. The idea is based on the combinesl afscopula and mixtures. Both have been used eim twn for
constructing multivariate lifetime distributionsytowith only moderate success. Our aim is to shieat their joint use

possesses some distinct advantages.
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1. INTRODUCTION

The construction of multivariate lifetime distrilrts is an important problem and there are a nurobarethods
that have been used successfully in their consducSome of these methods are discussed in thk bbbivariate
continuous distributions by Hutchinson and Lai (@QP9Two ideas, mixtures (Hougaard, 1986; Crowd&89) and
copulas (Joe, 1997), have been used in particlilae. mixture idea is easy to use, but may not peadequate
dependence structures (see Walker and Stepher). 199 the other hand, the copula methods allowfle models but
are hard to study. Song (2000) presents a classutifvariate dispersion models generated from thesSian copula and
studied some of its properties. Adham and Walké0{2 applied the mixture representation of the Gemapdistribution
in order to motivate a new family of distributionwich extends naturally to the multivariate cadee §oal of this paper is
to combine the mixture and copula ideas in orderotostruct multivariate lifetime distributions whiare easy to analyze

and allow full dependence structures.

It is well known that any lifetime density functiorfT (t) of a non-negative continuous random variakdan be

written as

ft)=h(t)s: (1),

Where hT (t) is the hazard function,Sr (t) is the survival function, which can itself be weit as

S (t) = exd~ H-(t)}

Where

Hy (t) = [ e (w) cw ®
Is the cumulative hazard functionThat is,

fr () = b (t) exe- H: (1)

www.iaset.us editor@iaset.us



62 Samia A. Adham

The mixture idea of Walker and Stephens (1999 istroduce a non-negative latent variablevhich follows a

gamma distribution with shape parameter 2 and szai@meter 1, denoted B/(2, 1). The density function can be written
as a mixture:

o ) =" 1> 1 )
f,(u)=uexp-u), u=o.

The mixture representation can be written in a ngameral form follows
t
b )= 9 1> A}

U-~G(@2 2.

Table 1 provides the functiogs(t)and A(t) which can be used to present a mixture from thetrosed

lifetime distributions. The functiorg(t) andA(t) are not unique; but one can ta}é{) as the hazard function and

A(t) as the cumulative hazard function when known isetbform.

Table 1: g(t)and A(t) Functions of the Most Used Lifetime Distributions

Distribution g(t) At)
Exp(c) C ct
Weibull(a, c) act®™ ct®
Gompertz(a, c) acexpé@t) C{eXp(at) _1}
G(a, ©) F(Ea) ta?t ct
| e | 1

H, \/57_0_ t 2l o

Intuitively, it can be seen from Table 1, for expatial, Weibull and Gompertz distributions, thedtjonsg(t)

andA(t) are their hazard and cumulative hazard functicspectively. Here we concentrate on the Gompéstalsutions

with parametera andc, denoted bysompertz (a, c), where the parameters are assumed to be positive.

The hazard function is
H.(t)=acexp@t), t>0, @

A literature search suggests many bivariate andivadhate lifetime distributions. However some ok are
difficult to study. Furthermore, the dependenceppries might be unknown or no extension to thetirariate case seems
possible. For example, Frees et al. (1996) apg@i®i/ariate Gompertz distribution with Frank’s cmuHowever, there
seems to be no available extension of Frank’'s @puldimensions higher than 2, except for discdit&ributions (Joe,

1993). This is not the story for the Gaussian capGlarrier (2000) studied a data set from a lifieusty portfolio on six
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different bivariate Gompertz distributions, eachwdfich is based on a specific copula model. Prggishe Gompertz
marginal distributions are coupled with the Frankailty, normal generalized Frank’s, linear migifrailty and correlated
frailty copulas. Carrier (2000) found the maximuikelihood estimates for the parameters in the ldw@armodels. Song
(2000) presented a class of multivariate dispersmmulels generated from the Gaussian copula andegtsdme of its
properties. Adham and Walker (2001) applied thetunexrepresentation of the Gompertz distributionrider to motivate a
new family of distributions which extends naturalthe multivariate case. Some other studies wevetgd to using copulas
in studying multivariate non-normal distributionsch as Abd EL Lteef(2005), AL-Hussaini and Ateya@a), AL-Dayian
et al. (2008), Gupta et al. (2010),Meisch et 201, Alai et al. (2015), Alai et al. (2016) amauipers.

Here we introduce our ideas for the constructiohmoltivariate lifetime distributions. Specificallyve assume

that T =(T1,...,Tp) to be @-dimensional non-negative random vector which apeddionally independent given

U={,...U,) ie

fT\U (t|u) = I]_il ij ‘Uj (tj‘ui ) (3)

If we take théJ j'sto be independer® (2, 1) then thél'j 's will be independent. To generate a dependence

structure we construct a multivariate distributfon U by using a copula, specifically Frank’s copula dined Gaussian

copula. That is,

0°Clv,,...,
fu(ul""’up):%ﬁ fu, ), ()
NCTN

Where, forj =1,..., p.v,= FUi (uj) and ij , FUj are density and distribution functions connecteth\the
gamma distribution with shape parameter 2 and szi@meter 1. Her@ is the copula.

This way we avoid the problems of placing a copdiieectly onto an unknown distribution with unknown
parameters, and instead are placing it onto thehliton with fixed marginals. There is also aaiaterpretation: the top
level sorts out the marginal aspects. While, tiveelolevel concerns with the dependence structudetlaa two levelscan

be dealt with separately.

Describing the layout of the paper, Section 2 iltates the construction of the multivariate Gompelistribution
based on Frank’s copula, while Section 3 deals thighmultivariate Gompertz distribution based om @aussian copula.
Section 4 studies dependence properties of the meltivariate models.Finally, an illustrative examps presented in

Section 5.
2. FRANK'S COPULA

This section provides a multivariate Gompertz distion based on Frank’s copula. Since there sden® no

available extension of Frank’s copula to dimensfogher than 2, except for discrete distributionse(J1993), we

concentrate ofp = 2.
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Frank’s copula for the distribution functiol?l§ = Fuj (uj), j =12, isgiven by

cv,.v,) :%Iog{h e ;9(_6[;2 _1)}, a#0. 5)

The joint distribution function of the mixing (lat§ variablesU, and U, can be written as
Fy (ul’ uz) = C(Vv'/z)-

WhereC(l/l,l/z) is given by (5). Given thaC and FUi (u) are continuous and differentiable, the bivariate

J

gamma density function of the pa(Ul,Uz) is then given by

fu (Ul’uz) = fu1 (ul) fu2 (UZ)C’(VI’ Vz)’ (6)

Where ij (uj )is G (2, 1) density function and

2Clyu,) _ aexstaly, +v,Je -1)

C'(Vvvz) = ov,0V, = {(eavl _1)(ea|/2 _1)+ e _1}2

, a#0. (7)

Consequently, the density function of the bivari@mmpertz distribution with Frank’s copula can bétten as

u C'{Ful(ul)’ Fo, (UZ)}dul du,,

2 ac. eajtj
i Vi
j j

fr (tvtz):.[:; .[:2 |__l
at, ,
WhereK; =c; (e “ —1), ]=12.
3. GAUSSIAN COPULA

In this section we present a multivariate Gompelistribution based on the Gaussian copula. Sintdathe
illustrated multivariate Gompertz distribution bdsen Frank’s copula, provided in the previous segtiwe use the
mixture representation of the univariate Gomperigtribution. By extending the mixing distributiorz(2, 1), to

multivariate form, but here it is based on the Garscopula with joint density function

: ”{rl | (ui)}c(vl,...,vp), ®

Wherefuj(uj) is the density function ofs (2,1) distribution, Vv, = FUj (u) and C'(I/l,...,l/p) is the

J

p-dimensional Gaussian copula density function given
C'(l/l,...,l/p):|R|_E exd -3 y(R* 1)y}, ©)
WhereR™ is the inverse of th X p correlation matrix) is pX p identity matrix andy = (yl,..., yp) is a
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vector such thay; = CD_l(Vj ) The joint density function ofl = (Tl, ...,Tp) is given by

=],

J.:nm) fru (tu)f, (u)dy,...du,, (10)

i)
WherefT‘U (t|u) and fU (u) are given by (3) and (8), respectively, eh'hg;lj (tj), j=1...,p,is given by (1)

after indexing by.

4. DEPENDENCE PROPERTIES

One reason for using Frank’s and the Gaussian aspuather than others, is that they provide fatige of
dependence. For Frank’s copula, Nelsen (2010) etedu KendaII’S(Kr)and Sperman’s rho(Sp)coefficients of

correlation to be, respectively

Where fok =12, D, ([) is “Debye” function. One can find out that:

e The correlation parametesr — O, C(Vl,VZ) given by (5), approach&gV, implying independence.

«  Whena — o, the positive correlation increases such thattreslation measure approachesl.

+  When@ — —oo, the correlation measure approached.

On the other hand it is known that the Gaussianleofamily provides a full range of dependence leetvthe

joint variables. That is
~1<Corr, (U,,U,) < +1.

For simplicity in studying dependence propertiestted multivariate model based on mixtures and Ganss

copula we provide the multivariate exponentialritisttion as a special case of both multivariate bMiiand multivariate
Gompertz distributions. For the bivariate exporandiistribution with marginal distributionsEXp(Cj), ] =12, one

can easily find that the conditional expectation

u,u
Er\u (T1T2|U1 =u,U, = uz):ﬁ-

Consequently, the correlation betwedpand T, is given by
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1
Corr, (Tl,TZ):ZEU L,U,)-1, (11)

And the correlation betweet), and U, is given by

1
Corr, (ul,uz):EEU L,U,)-2 (12)

From equations (11) and (12) one can show thad¢pendence of the bivariate exponential besed darescand

the Gaussian copula is
1
Corr, (T,,T,) = ECorrU U,,u,)

That is, our idea of combining both mixture and wapprovides a wide range of both positive and tiega

dependence.

5. ILLUSTRATIVE EXAMPLE
The data set of this example, fracture toughnessaken from Walker and Stephens (2000). They deee
probability models for the analysis of the fractioeighness data in the ductile to brittle tempeeatuansition range.

Assuming that the observed crack length (in mnpresented by a random variablg and random variablel, is the

fraction toughness (in KJ).In this study we concatet on the case of ductile fracture occurrencéy b and T, are

positive. Specifically, we deal with a subset af tomprises 23 data pairs. Table 2, presents thsdared data set.

Applying WinBUGS, three bivariate distributions ditted, separately and twice, to the data set. @me for
Frank’s copula and the other for the Gaussian eoptike three bivariate distributions are bivariatpamential, bivariate
Weibull and bivariate Gompertz. The six model pagtars were estimated. Figures 1, 2 and 3 show #rginal posterior
distributions of the parameters of the bivariatedeie with Frank’s copula. And Figures 4, 5 andl&vs the marginal

posterior distributions of the parameters of theabate models with Gaussian copula.

Table 2: Fracture Toughness Data Set. (Source: Watk and Stephens, 2000)

LT
0.14 | 101.9
0.85 | 309.0
0.311| 219.0
0.611| 270.0
1.17 | 309.8

1.0 | 318.0

0.2 | 169.0
0.17 ] 177.0
1.922| 291.9
0.474| 270.6
2.260| 390.5
0.190| 256.9
0.430] 293.9
0.680| 328.5
0.760| 333.4
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1.170| 394.9

0.860| 337.9

0.890| 339.6

0.870| 340.9

0.430| 286.7|

0.670| 278.0

0.377| 197.6

0.294| 220.1
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Figure 1: Marginal Posterior Distributions of the Correlation Parameters of the Bivariate
Exponential Distribution Based on Frank's Copula
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Figure 2: Marginal Posterior Distributions of the Parameters of the Bivariate Weibull Distribution
Based on Frank's Copula
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Figure 3: Marginal Posterior Distributions of the Parameters of the Bivariate Gompertz Distribution
Based on Frank's Copula
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Figure 4: Marginal Posterior Distributions of the Parameters of the Bivariate Exponential Distribution
Based on the Gaussian Copula
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Figure 5: Marginal Posterior Distributions of the Parameters of the Bivariate Weibull Distribution
Based on the Gaussian Copula
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Figure 6: Marginal Posterior Distributions of the Parameters of the Bivariate Gompertz Distribution
Based on the Gaussian Copula
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